Distance Metric Learning from Pairwise Proximities

نویسنده

  • Brian McFee
چکیده

We compare techniques for embedding a data set into Euclidean space under different notions of proximity constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Shrinkage Expansion Adaptive Metric Learning

Conventional pairwise constrained metric learning methods usually restrict the distance between samples of a similar pair to be lower than a fixed upper bound, and the distance between samples of a dissimilar pair higher than a fixed lower bound. Such fixed bound based constraints, however, may not work well when the intraand inter-class variations are complex. In this paper, we propose a shrin...

متن کامل

Bayesian Active Distance Metric Learning

Distance metric learning is an important component for many tasks, such as statistical classification and content-based image retrieval. Existing approaches for learning distance metrics from pairwise constraints typically suffer from two major problems. First, most algorithms only offer point estimation of the distance metric and can therefore be unreliable when the number of training examples...

متن کامل

Classification on Pairwise Proximity Data

We investigate the problem of learning a classification task on data represented in terms of their pairwise proximities. This representation does not refer to an explicit feature representation of the data items and is thus more general than the standard approach of using Euclidean feature vectors, from which pairwise proximities can always be calculated. Our first approach is based on a combin...

متن کامل

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008